
PHYSICAL REVIEW B 102, 085415 (2020)
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Trapping, levitating, and manipulating nanoscale objects with light forces shaped by patterned metamaterials
continues to hold great interest for optical and condensed matter physics and engineering. Successful develop-
ments to date have concentrated on constraining movement only in one dimension, along the vertical axis to a
material plane. Here we propose a realistic structure, consisting of alternating layers of graphene and dielectric,
and periodically nanopatterned on the surface, that is capable of levitating and trapping nanoscale particles
in two dimensions: one perpendicular and one parallel to the material plane. Repulsive forces arising from
high- k modes of the metamaterial provide particle levitation along the vertical axis. At the point where this
repulsive force balances the downward gravitational force, the particle is trapped at stable equilibrium. Periodic
nanopatterning in the metamaterial surface furnishes the second, horizontal axis constraining particle motion.
We show that the equilibrium position above the surface can be controlled by adjusting both the Fermi level and
the number of graphene layers. Furthermore, to explicate the role of the high-k modes in generating the repulsive
forces, we also propose a semianalytical method to calculate both the potential well and the forces generated by
dipole radiation above the nanopatterned surface.
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I. INTRODUCTION

The use of optical forces produced by electromagnetic
radiation has been extensively explored by the scientific com-
munity over the past decades to control the position of small
particles, such as cells, viruses, molecules, or atoms [1–14].
The precise control of the particle position allows trapping
in specific locations, as is desirable for optical cooling [1],
optical trapping [2], quantum computing [7], lab-on-a-chip
[8], and electromagnetic levitation [9–13], among other ap-
plications [14]. Particle optical trapping is achieved usually
with a potential minimum generated by optical forces exerted
by an external light source [5,6,15–23]. The field distribution
required to create a stable potential well can be produced, for
instance, by Gaussian beams [16,17,22], waveguides [19,20],
and plasmonic structures [23]. Nonetheless, all these ap-
proaches need complex optical setups [16–23] with limited
control of the particle position [24].

Fortunately, the optical setups can be greatly simplified if
the force gradients are produced by the radiation scattered
by the particle itself [6–9,19–25]. A promising way of shap-
ing the potential gradients consists in letting the radiation
scattered by the particle interact with nearby structures or
interfaces [10,26]. When the structure is composed of conven-
tional materials, such as metals and dielectrics, the resulting
force is attractive; i.e., it acts to pull the particles toward the
surface [13,24,27]. In contrast, artificial materials (or meta-
materials) can successfully produce repulsive forces strong
enough to prevent the particle from touching the surface
[6–9,19–25,28,29]. Producing repulsive forces with particle
self-radiation, as opposed to conventional approaches, allows

particle levitation and trapping with a plane wave pumping the
emitters.

According to [13], in the quasistatic regime (kx � k0,
where k0 = 2π/λ, λ is the wavelength, and kx is the parallel
component of the wave vector k), repulsive forces are ob-
tained when the particle is at close distance from a structure
(<λ/20) whose s- and p-polarization1 reflection coefficients
have negative real parts (Re{Rs,Rp} < 0). Assuming a par-
ticle in free space above a homogeneous biaxial structure
with permittivity and permeability tensors defined as ε̄ =
diag[ε‖ ε‖ ε⊥] and μ̄ = diag[μ‖ μ‖ μ⊥], the s- and
p-polarized waves’ contributions to the force become repul-
sive when |√μ⊥μ‖| < 1 and |√ε⊥ε‖| < 1. In this scenario,
the authors of [13] have considered subwavelength particles
that behave essentially as electric dipoles. Since p waves dom-
inate the radiation of electric dipoles [30,31] the condition
|√ε⊥ε‖| < 1 is usually sufficient to guarantee repulsive forces
(see Appendix A for details).

There are several design approaches to metamaterials with
ε⊥ and ε‖ close to zero [32–34], but the simplest uses a
planar stack of alternating metal/dielectric layers [35–39]. By
fine-tuning the material layers and thicknesses, it is possi-
ble to control both ε⊥ and ε‖ [35–39]. Although metama-
terials with |√ε⊥ε‖| < 1 are not difficult to design, these
media present strong spatial dispersion for evanescent waves
(|kx| � k0), that gives rise to a spatial frequency cutoff kc,

1s- and p-polarized waves have the electric field perpendicular and
parallel, respectively, to the optical axis.
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where |√ε⊥(kx )ε‖(kx )| > 1 for |kx| > kc [40–44]. This fea-
ture becomes a critical issue if the particle is close to the
surface, where the evanescent wave coupling is strong. In
this condition, the repulsive force from waves below cutoff
(|kx| < kc) is overcome by the attractive forces from waves
above cutoff (|kx| > kc) that pull the particle down toward the
surface.

One approach to increase kc is to reduce the layer thickness
[41]. Thus, some authors have proposed replacing the metal
layers by two-dimensional (2D) materials, such as graphene
or boron nitrite, because the layers of these materials are
atomically thin [45]. Particularly for graphene, the spatial dis-
persion becomes negligible if λ is much longer than the Fermi
wavelength (λF = 2π/k f = ∼4–10 nm, where k f is the Fermi
wave vector) [46]. Moreover, graphene offers the opportunity
of controlling the repulsive force magnitude and equilibrium
distance (through levitation, where attractive, repulsive and
gravitational forces balance) by tuning the Fermi level (EF )
[46–48].

In this context, we propose here a graphene-based struc-
ture capable of trapping small particles above the surface
and demonstrate how to control the particle-surface distance
by manipulating the graphene conductivity. In addition to
trapping the particle along the structure normal axis (particle
levitation), we also utilize nanopatterns to lock them along
one of the in-plane axes. The nanopatterns allow the particle
to be confined in small regions, resulting in enhanced position
control. Moreover, we calculate the force spatial-frequency
spectrum to demonstrate both the influence of high-k modes
and how the patterns unbalance the force to create lateral
forces that trap the particle along the x axis. This paper reports
a practical structure capable of using the particle scattered
radiation to create a two-dimensional (2D) potential well.
We also propose a semianalytical procedure to calculate the
optical forces of a dipole above a nanopatterned structure
(along one or two axes). Despite previous analytical tech-
niques proposed to calculate the recoil forces in several sce-
narios [6–9,19–25], our semianalytical procedure is tailored
for detailed and accurate calculation of the optical forces
and electric potential of a point dipole above nanopatterned
structures.

This paper is organized as follows. Section II presents the
mathematical formalism describing the potential (U) and the
force (F) acting on a particle above a general nanopatterned
structure. In Sec. III, we describe the optimization of both the
Fermi potential and the number of graphene layers to obtain
the potential energy profile required for trapping particles. We
also discuss the influence of the high-k modes on the depth
of the potential well. In Sec. IV, we investigate the influence
of nanopatterns on the potential as well as the role played by
the grooves on the lateral force responsible for confining the
particle along the x axis. Finally, we make some concluding
remarks in Sec. V.

II. MATHEMATICAL MODEL

There is consensus in the literature, and also assumed here,
that small particles behave as electric point dipoles governed
by Maxwell’s equations when they are far from any resonance
[6–9,19–25]. The time-averaged optical force (F) due to an

FIG. 1. Nanopatterned structure with periods �x and �y along
the x and y directions, respectively, used here as a model for calculat-
ing the electric POTENTIAL. The dipole is excited by an external plane
wave and scatters light toward the +z (E+

d ) and –z (E−
d ) directions.

E−
d is reflected by the patterned structure creating a potential well.

electric field Et = Exx + Eyy + Ezz acting on a dipole located
at position rd is given by [47]

〈F(rd)〉 = 1

2
Re

⎧⎨
⎩

∑
b=x,y,z

p∗
b∇Eb(rd)

⎫⎬
⎭ − Fg, (1)

where pb is the b component of the dipole momentum p
(b = x, y, or z) and Fg is the gravity force (|Fg| = mg,
where m is the particle mass and g the gravity acceleration
constant, g ∼= 9.8 m/s2). In Eq. (1), p is the sum of the
dipole moment generated by means of an external light source
and the dipole fluctuations due to the temperature [49–51].
Nonetheless, these fluctuations that give rise to the Casimir-
Polder interactions are small compared to the external light
dipole excitation. Thus, the fluctuation contributions to p will
be neglected henceforth. In the quasistatic approximation, the
dipolar force is also defined as the negative gradient of the
potential energy U, or F = −∇U [52]; thus,

U (rd) = −1

2
Re

⎧⎨
⎩

∑
b=x,y,z

p∗
bEb(rd)

⎫⎬
⎭ + Ug(q) + cte, (2)

where Ug = mgq is the gravitational potential energy and q is
the distance of the dipole from the surface. According to (1)
and (2), to calculate F and U it is necessary first to calculate
the total electric field at the dipole position. Thus, consider a
dipole embedded in medium 1 (with permittivity ε1) above a
nanopatterned structure with periods �x and �y along the x
and y directions, respectively, as depicted in Fig. 1. The total
electric field acting on the particle is

Et(rd) = Ed(rd) + Er(rd) + Ee(rd), (3)

where Ee is the electric field that excites the dipole, Ed is
the electric field scattered by the dipole, Er is the electric
field reflected by the nanopatterned structure, and rd = qz is
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the dipole position. In addition, there is also the electric field
at the particle position induced by current fluctuations at the
structure surface [49–51]. Nonetheless, these fluctuations that
also give rise to the Casimir-Polder interactions are negligible
compared to the external light electric field at the distances
pertinent to this study. Therefore, they are not taken further
into consideration. Based on (3), the potential can be decom-
posed as

U (rd) = Ud + Ue + Ur + Ug(q) + cte, (4)

where Ud , Ue, and Ur are the potentials generated by Ed, Ee,
and Er, respectively. The 2D Fourier transform (FT) of the
electric field radiated by the dipole toward the +z (EFT,+

d ) and
–z (EFT,−

d ) directions is written as [31,53]

EFT,ξ

d (k||, z) = i
ωμ1

4π
eiξkz (z−q)[Ps(k||) ⊗ Ls(k||, z − q)

+ Pp(k||) ⊗ Lp(k||, z − q)]p, (5)

where ω is the angular frequency, μ1 is the permeability of
medium 1, k1 = |k1| = |kxx + kyy + ξkzz| is the magnitude
of the wave number in medium 1, k‖ = kxx + kyy is the
parallel component of k1, � is the outer product symbol,
and ξ = 1 or –1 for waves propagating along the +z or –z
direction, respectively. Vectors Lχ and Pχ in (4), with χ

denoting wave polarization (χ = s or p), are as follows,

Ls(k||, z − h) = eξ ikz (z−q)

kz|k||| [ky −kx 0]T, (6)

Lp(k||, z − h) = eξ ikz (z−q)

k1|k|||
[
kx ky −ξ

|k|||2
kz

]T
, (7)

Ps(k||) = 1

|k||| [ky −kx 0]T , (8)

Pp(k||) = 1

k1|k||| [kxkz kykz −ξ |k|||2]T , (9)

where the superscript T denotes transposed matrix. The vec-
tors Lχ are related to the amplitude of EFT,ξ

d while the vectors
Pχ affect the decomposition of the electric field into its x, y,
and z components [31]. As shown in Fig. 1, E−

d is reflected at
the surface of the nanopatterned structure therefore generating
Er, which in turn is calculated via the Fourier transform of
EFT

r as follows [31],

EFT
r (k||, z)

= i
ω2μ1

4π

⎛
⎝

⎧⎨
⎩

∑
b=x,y,z

pb
[
Rb

s,s(k‖) + Rb
p,s(k‖)

]
⎫⎬
⎭Ps

(
k‖

)

+
⎧⎨
⎩

∑
b=x,y,z

pb
[
Rb

s,p(k‖) + Rb
p,p(k‖)

]
⎫⎬
⎭Pp(k‖)

⎞
⎠eikzz,

(10)

Rz
p,σ (k||) = −

∞∑
j,m=−∞

|kj,m
‖ |

k j,m
z k1

eik j,m
z qr j,m

p,σ (kj,m
‖ ), (11)

Rz
s,σ (k||) = 0, (12)

Rx(y)
s,σ (k||) =

∞∑
j,m=−∞

km( j)
y(x)

k j,m
z |kj,m

‖ |eik j,m
z qr j,m

s,σ (kj,m
‖ ), (13)

Rx(y)
p,σ (k||) =

∞∑
i,m=−∞

k j(m)
x(y)

k1|kj,m
‖ |eik j,m

z qr j,m
p,σ (kj,m

‖ ), (14)

ki
x = kx − jKx

km
y = ky − mKy

kj,m
‖ = k j

x x + km
y y

k j,m
z =

√
k2

1 − |kj,m
‖ |2,

(15)

where r j,m
χ,σ is the reflection coefficient of the (j,m) diffraction

order along the (x, y) axis for a χ -polarized incident wave
with vector kj,m

‖ reflected with σ polarization (χ, σ = s or p),
Kx and Ky are the nanopatterned reciprocal lattice vector
amplitudes in the x and y directions, respectively [Kx(y) =
2π/�x(y), where �x (y) is the structure periodicity along the
x (y) axis]. We use the semianalytical rigorous coupled wave
analysis (RCWA) method to calculate the reflection coeffi-
cients [54–57]. After calculating EFT,ξ

d and EFT
r , the spatial

distribution of Ed and Er, required to calculate U in (2) and
(4), can be found using the 2D inverse FT as follows:

Eα (r) = 1

2π

∫ ∞

−∞

∫ ∞

−∞
EFT

α (k||, z)ei(kxx+kyy)dkxdky,

α = r or d. (16)

In short, the first step to obtain the total force acting on
a particle above a nanopatterned structure is to calculate the
dipole emitted (Ed) and reflected (Er) fields, followed by
substitution into (3) and (2), and finally (1). Notice that the
spatial distribution of the excitation field (Ee), required in (3),
is already known.

Another important parameter for particle trapping is the
external quantum efficiency (η), defined as

η = Qrad

Qrad + Qeva
, (17)

where Qrad and Qeva are the radiated and evanescent power,
respectively, dissipated by the particle and calculated as fol-
lows,

Qrad = 1 + ω

2π
Re

{∫∫
R

(
p∗ · EFT

r

)
dkxdky

}
, (18)

Qeva = ω

4π
Re

{∫∫
E

(
p∗ · EFT

r

)
dkydkx

}
. (19)

where R and E are defined as the region inside and outside the
circle |k‖| � k1, respectively. The large momentum transfer
provided by radiative emission can remove a particle from the
optical trap. Consequently, it is important to design structures
capable of evanescently coupling most of the power emit-
ted by the particle, thereby reducing η. Once the procedure
for calculating U and 〈F〉 of a nanopatterned structures is
complete, the next step is to design the structure capable of
trapping a particle modeled by a point dipole.
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FIG. 2. (a) shows the proposed structure consisting of a thin SiO2 layer (with thickness ddi) sandwiched between Nlayers layers of graphene.
The potential (U) and force (Fz) acting on the particle as a function of the distance z from the proposed structure is presented in (b). Uwell and
zwell represent the potential depth and minimum point above the surface, respectively.

III. STRUCTURE DESIGN

The proposed structure consists of a thin SiO2 layer (with
thickness ddi) inserted between Nlayers layers of graphene, as
shown in Fig. 2(a). We choose graphene over conventional
metals (such as gold and silver) because the thin graphene
layers increase kc [41] and, consequently, enable the force re-
pulsive contribution in the region where |kx| < kc to overcome
the attractive one, thus allowing the formation of a potential
well in some interval of z. The choice for SiO2 is described
in Appendix A. The repulsive force is achieved by applying a
potential higher than 1 eV between the graphene layers. With
the proposed configuration, the force along the z axis (Fz) is
mainly due to the coupling of the evanescent fields with the
evanescent bulk modes of the structure. Consequently, Fz is
repulsive and decays exponentially as the dipole moves further
away from the surface. Note that evanescent waves can be
associated with both the dipole and the structure, which might
be confusing or misleading. Therefore, to clarify this issue,
all the structure modes (evanescent or radiative) are hereafter
referred to as “bulk modes,” while the term “evanescent fields”
refers to the dipole radiation. The exponential decay of the
high-k modes responsible for the repulsive force is overcome
by the attractive contribution (less attenuated) at z = zwell,
where the sign of Fz changes and the force acting on the dipole
becomes attractive. This creates a stable equilibrium position
(EP) which represents the minimum of a potential Uwell as
shown in Fig. 2(b).

To demonstrate how to trap particles with the proposed
configuration, we consider a particle with electric polariz-
ability α = 1.39 × 10−35 C m2 V−1 and mass m = 9.98 ×
10−21 kg (equivalent to a gold sphere with a 5-nm radius
[58]) normally excited from the substrate by a 0.25-W laser
with a 12.4-μm2 spot area (equivalent to a 4-μm-diameter

monomode fiber) and λ = 780 nm.The polarizability α and
Ee induce a dipole moment on the gold particle of p =
|p| = α|Ee| = 5.43 × 10−29 C m. Moreover, the plane ex-
citation wave [Ee = E0 exp(ik1r)Êe] does not contribute to
the force (Fe(rd)) since the polarizability is assumed lossless
(Im{α} = 0) [52,59] and ∇E0 = 0 (plane wave). The dipolar
force on the particle is expressed as follows:

〈Fe(rd)〉 = 1

2
Re

⎧⎨
⎩

∑
b=x,y,z

ik1α
∗|E0|2 + α∗E0∇E0

⎫⎬
⎭ = 0.

(20)
Figure 3 shows the calculated zwell (a,d), Uwell (b,e), and

η (c,f) considering a stack composed of a 10-nm silicon
dioxide (SiO2, permittivity 2.16) layer sandwiched between
Nlayers = 2 (squares), 3 (circles), 4 (triangles), 5 (stars), 6
(hollow squares), and 7 (hollow circles) graphene layers for
perpendicular [p = pz, (a–c)] and parallel [p = px, (d–f )]
polarization. Appendix B contains the graphene properties
adopted here. Note that we use temperature units for the
potential, whose conversion factor is U (J ) = kbolT (mK) ×
103, where kbol is the Boltzmann constant. Furthermore,
the graphene Fermi potential is changed with a bias volt-
age applied to the graphene layers [46,48]. As shown in
Appendix A, the repulsive force is present only when the
perpendicular (ε⊥) and parallel (ε‖) permittivities of the
graphene-SiO2-graphene stack, determined according to [41],
obey the relation |√ε‖ε⊥| < 1, and the force becomes increas-
ingly greater as |√ε‖ε⊥| → 0. This condition is satisfied when
EF becomes higher than a potential threshold (ET ) that de-
pends on the number of graphene layers (see Table I). If EF >

ET , the force becomes repulsive and the well generated by the
structure behaves essentially as the one shown in Fig. 2(b).
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FIG. 3. zwell (a,d), Uwell (b,e), and η (c,f) calculated considering a stack composed of Nlayers = 2 (squares), 3 (circles), 4 (triangles), 5 (stars),
6 (hollow squares), and 7 (hollow circles) graphene layers for perpendicular [p = pz, (a–c)] and parallel [p = px, (d–f)]. The dipole orientation
is shown in the first column.

However, if EF > ET , the force is attractive, and no potential
well is generated. Consequently, zwell and Uwell can only be
defined for EF > ET , as shown in Figs. 3(a) and 3(b). Fewer
layers require thinner graphene layers and, consequently, a
higher EF threshold since the graphene would need more
free carriers to exhibit a more metallic behavior. Furthermore,
when |√ε‖ε⊥| is close to 1 (at the threshold potential), the
repulsive force is weak, resulting in an equilibrium posi-
tion close to the structure surface (zwell < 5nm for Nlayers =
2, 3, 4, and 5). As the potential increases, the quantity
|√ε‖ε⊥| → 0, causing the repulsive force to increase and zwell

to move further away from the surface, as shown in Figs. 3(a)
and 3(d).

Another important aspect regarding the trapping position is
that zwell is independent of the dipole polarization, as shown
in Figs. 3(a) and 3(d). The reason is that the graphene-SiO2-
graphene layers couple mostly p modes. Consequently, the
potential energy is defined essentially by p-polarized waves,
making the potential minimum position fixed regardless of the
dipole orientation. Nevertheless, the well depth is smaller for
parallel than for perpendicular polarization because its energy
is lost partly as s-polarized waves that do not interact with
the structure and therefore do not contribute to the potential
depth. The number of layers also plays an important role in
the potential well depth, as shown in Figs. 3(b) and 3(e). That
is, the greater the number of layers (Nlayers), the shallower the
potential (U) becomes for the same EF . Furthermore, as Nlayers

increases, the potential well is established further away from

TABLE I. Potential threshold (ET ) as a function of Nlayers neces-
sary to generate the potential well.

Nlayers 2 3 4 5 6 7
EF (eV) 1.40 1.18 1.08 1.04 1.00 < 1

the surface (same EF ) and, consequently, the dipole evanes-
cent fields impinging on the structure become weaker. Thus,
the coupling to high-k p modes is diminished, resulting in a
shallower well. This feature also explains why zwell increases
while Uwell decreases for higher EF , as shown in Figs. 3(b)
and 3(e). Moreover, a higher zwell implies a higher η because
it becomes more difficult for the evanescent waves to couple
with the structure modes, as shown in Figs. 3(c) and 3(f). As
previously explained, the large momentum transfer provided
by the radiative emission might remove the particle from the
optical trap. Thus, it might be necessary to lower the quantum
efficiency η by either increasing Nlayers or reducing EF to
prevent the particle from escaping the EP. Unfortunately, the
s-polarized waves radiated by the parallel dipole [Fig. 3(f)]
do not couple to the bulk modes, and only contribute to the
radiative power (Qrad). Note from Figs. 3(c) and 3(f) that η

of a parallel dipole is twice as high as that of a perpendicular
dipole. This occurs because perpendicular dipoles emit only
p-polarized waves, while parallel dipoles emit both s- and p-
polarized waves. Finally, either increasing Nlayers or reducing
EF results in low values of η which helps prevent the particle
from escaping the EP.

The stronger coupling between the evanescent waves and
the bulk modes results in a deeper Uwell whenever EP shifts
closer to the surface. Although a high Uwell is desirable, the
high power dissipated by the high-k bulk modes enhances
the spatial dispersion that modifies the electric field pattern
and, consequently, the potential barrier [41]. Hence, the lo-
cation of EP should be far enough from the surface to avoid
spatial dispersion, but close enough to guarantee a potential
sufficiently deep to trap particles. These findings show that a
range of values for Uwell, zwell, and η must be found to achieve
a useful operating region. The following requirements satisfy
these conditions:

(1) zwell > 10 nm to avoid spatial dispersion;
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(2) Uwell > 1 mK, which is deep enough for small particle
trapping applications. Note that larger particles [5,6] demand
deeper potential, which is achieved with stronger excitation;

(3) η < 10%, to reduce photon emission (assuming par-
ticles far from resonances, which reduces the probability of
photon emission. Nonetheless, the proposed structure reduces
this probability even further).

The gray areas of Figs. 3(a)–3(f) highlight the values of
Uwell, zwell, and η that satisfy these criteria. Note that the
range of possible values for Nlayers and EF allows structure de-
signs according to fabrication restrictions. Moreover, although
thinner graphene layers facilitate the fabrication process, it
also requires a higher Fermi potential EF to satisfy the above
criteria. In this sense, to achieve a good compromise between
fabrication and performance efficiency, we chose Nlayers = 5
and EF = 1.125 (ev). This set of parameters guarantees that
the equilibrium position EP is both far enough from the sur-
face to reduce spatial dispersions (zwell = 10 (nm) ) and deep
enough to trap either parallel (Uwell = 5.3 mK) or perpendic-
ularly (Uwell = 10.5 mK ) polarized particles. Moreover, the
external quantum efficiency is smaller than 10% regardless of
the polarization; i.e., η = 3% and 6% for perpendicularly and
parallel polarized particles, respectively.

To gain deeper insight into the nature of the repulsive force,
we show in Figs. 4(a)–4(c) the contribution of the spatial
distribution of Uz to the force (Uz = Ur + Ug) considering
p = pz(Uz ) at distances q = 8, 10, and 12 nm from the
surface, respectively. To allow clear visualization, Fig. 4(d)
shows a cut along the z axis of the Uz map at x = 0 (particle-
dipole position) for q = 8 (circles), 10 (squares), and 12
nm (triangles). Note that, when q = 8 nm (q < zwell ), Uz

decreases at the particle position, and since the radiation
pushes the particle toward the potential minimum, the force
is repulsive [red arrow in Fig. 4(d)]. In contrast, when q = 12
nm (q < zwell ), Uz at the particle position increases with z,
and the force becomes attractive [green arrow in Fig. 4(d)].
Finally, at the EP (q = 10 nm), the particle is already at the
Uz minimum position, and no net force acts on the particle.
Another aspect observed in Figs. 4(a)–4(c) is that the bulk
modes excited by the dipole radiation become weaker as the
particle moves away from the surface due to the exponential
decay of the evanescent fields. Consequently, the absolute
value of the force also decreases as indicated by Eq. (1).
To understand this phenomenon, the force vector (FFT) can
be written as a function of the spatial frequency (k) as
follows,

FFT(k‖, rd) = 1

2
Re

{
p∗

z∇′EFT
z (k‖, rd)

} + 2πFgδ
(
k‖

)
, (21)

where ∇′ is the del operator in rd. Figure 4(e) shows the FFT

z component (F FT
z ) normalized to the gravitational force |Fg|,

where kρ =
√

k2
x + k2

y is the radial wave vector in cylindrical
coordinates (this conversion is possible due to the structure
axial symmetry). The total force (F) can be obtained by
integrating FFT over the full spatial frequency map at the
dipole position rd, as follows:

F(rd) = 1

2π

∫ ∞

−∞

∫ ∞

−∞
FFT(

k||, rd
)
dkxdky. (22)

FIG. 4. Spatial distribution Uz for p = pz and q = 8 (a), 10 (b),
and 12 nm (c). (d) represents a cut along the z axis of the Uz map at
x = 0 (particles position) for q = 8 (circles), 10 (squares), and 12 nm
(triangles). (e) shows the normalized spatial frequency of the force
(F FT

z /|Fg|) as function of kρ for q = 8 (circles), 10 (squares), and 12
nm (triangles). In (c), the red and green arrows represent the direction
of the force acting on the particle at q = 8 and 12 nm, respectively.
In (d), the red and black shaded areas represent the regions where the
contribution to the force is attractive and repulsive, respectively. The
dipole orientation and position are represented by an arrow-crossed
solid black circle in (a–d).

According to Fig. 4(e), bulk modes with kρ < 25k0 gen-
erate attractive forces (red area), while those with 25k0 <

kρ < 82k0 produce repulsive forces (gray area). The spatial
dispersion induced by the layers’ thickness creates a cutoff
spatial frequency (kc) at kc = 82k0, where for |√ε⊥ε‖| > 1
with kρ > kc the force becomes attractive. For the proposed
structure, the high kc values allowed by the thin graphene
layers make the attractive contribution of F FT

z (kρ ) insignif-
icant for kρ > kc [see Eq. (22)]. When the particle is close
to the structure (q < zwell ), the repulsive region of F FT

z (kρ )
(25k0 < kρ < 82k0) has a higher contribution to the force than
its attractive contribution (25k0 > kρ ), as shown in Fig. 4(e)
for q = 8 nm (circles). Since Fz is the integral of F FT

z (kρ ),
Fz becomes repulsive when q < zwell. As the particle moves
further away from the surface, the repulsive contribution
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FIG. 5. The potential U (a) and normalized force (Fz/|Fg|) as
a function of the distance q from the structure for perpendicular
(circles) and parallel (squares) polarization. The gray area highlights
the region where the force acting on the particles is repulsive.

(25k0 < kρ < 82k0) is highly attenuated compared to the at-
tractive one (25k0 > kρ ) due to higher kρ , and for q = 10 nm
(squares), both contributions become equal, resulting in a
null force. Note that F FT

z (kρ ) decays more pronouncedly for
q = 10 nm than for q = 8 nm, as indicated in Figs. 4(a) and
4(b), where Uz is weaker for q = 10 nm than for q = 8 nm.
Furthermore, the higher attenuation of the F FT

z (kρ ) repulsive
contribution results both in an attractive force and a weaker
Uz for q > zwell, as shown in Figs. 4(e) and 4(c). In summary,
Fig. 4(e) reveals the role played by the repulsive region higher
attenuation (due to higher kρ for increasing q) in changing the
sign of Fz to produce an EP capable of trapping particles in
a potential well. In this sense, Figs. 5(a) and 5(b) show the
potential U (circles) and the force along the z direction (Fz),
respectively, for a particle located q nm above the structure
surface for perpendicular (circles) and parallel (squares) po-
larizations. Note that U is higher closer to the surface and
decreases exponentially for increasing q, as shown in the gray
area of Fig. 5(a). This is due to the dipole radiation that
couples evanescently to the structure for q < zwell. Moreover,
Fz is positive in this region, causing the force acting on the
particle to be repulsive, as shown in the gray area of Fig. 5(b).
At q = zwell, the particle reaches the EP where U is minimum
(Uwell) and the force along the z axis is zero (Fz = 0 ). Away
from the structure (q < zwell ), U increases smoothly and the
force becomes attractive (Fz < 0). This behavior is the same
for perpendicular and parallel polarizations, except for the
amplitudes of U and Fz which are half for parallel polarization
(because s-polarized waves do not couple to the structure).
Finally, Fig. 5 shows that the designed graphene-based struc-
ture can lock the particle position at z = 10 nm, regardless of
the particle polarization. After delineating the important role

FIG. 6. Optimized graphene-SiO2 stack patterned along the x
axis with period (�x) and ridge width (wx) of 150 and 125 nm,
respectively. The optimized structure has a 10-nm-thick SiO2 layer
inserted between five graphene layers.

played by the high-k bulk modes for the levitation, the next
step is to confine the particle along one additional axis.

IV. NANOPATTERNED STRUCTURE ANALYSIS

We accomplish this feature by adding periodic patterns
along the x axis of the optimized graphene-SiO2 stack with
period �x = 150 nm and ridge width wx = 125 nm, as de-
picted in Fig. 6. The optimized structure has a 10-nm-thick
SiO2 layer sandwiched between five graphene layers. Figure 7
shows the electric potential (U) generated by the dipole ra-
diation assuming p = pz (a), px (b), and py (c). Similarly
to the flat structure in Fig. 2, U increases rapidly close to
the surface due to the stronger coupling of evanescent waves
with the bulk modes, and decreases exponentialy as the dipole
moves further away from the surface. The small magnitude
of U above the grooves is explained by the lack of high-k
bulk modes to couple with the evanescent waves radiated by
the dipole, as shown in Figs. 7(a)–7(c). Furthermore, the Uwell

produced by the patterned structure above the ridges is close
to the values obtained with the flat structure (Uwell = 9.8 (mK)
and 4.9 mK for p = pz and px or py, respectively), and occurs
at the same distance from the surface (zwell = 10 (nm) for
p = pz px, or py). This behavior indicates that the energy
reflected by the groove contributes little to U at the ridge
center because the coupled high-k bulk modes only project
for a few nanometers before being highly attenuated [approx-
imately 35 nm—Figs. 5(a)–5(c)]. As the particle moves from
the ridge center toward the groove, the energy reflected by
the ridge edges continuously increases, resulting in a potential
barrier that constrains the dipole movement along the x axis,
as shown in Figs. 7(a)–7(c). Assuming a –3-mK contour
[black lines in Figs. 7(a)–7(c)], one obtains a 125-, 100-,
and 110-nm-wide well along the x direction, and a 10-, 5-,
and 5-nm-wide well along the z direction for p = pz px, or
py, respectively. Note that the barrier width is determined
mostly by wx, whereas the dipole polarization has little to
no influence. In summary, the proposed patterned structure is
capable of limiting the particle movement along both the z and
x axes. A judicious choice of the nanopattern parameters �x

and wx is required to engineer the wells.
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FIG. 7. Electric potential U generated by the particle radiation assuming p = pz (a), px (b), and py (c). The black contours on the potentials
delimit the region where U < –3 mK in the three panels.

To gain a deeper insight into the the nature of the repulsive
force, Figs. 8(a)–8(d) show the spatial distribution of Uz

for p = pz assuming the dipole at the ridge center (xd = 0)
and at q = 8 nm (a), 10 nm (b), and 12 nm (c) from the
surface. Also assume a dipole close to the –3-mK contour
limit at xd = −60 nm for q = 10 nm (d). The force direction
is shown as a red arrow. Due to symmetry, the force along
the x direction is null for these three positions. Furthermore,
as the force direction indicates, the particle tends to move
toward the minimum of Uz, representing a repulsive force
for q = 8 nm (Fz = 1.1 × 103|Fg|), a nearly null force for
q = 10 nm (Fz = 630|Fg|), and an attractive force for q =
12 nm (Fz = –0.2 × 103|Fg|). This force behavior results in
the potential observed at Fig. 7(a). As in the flat structure, the
amplitude of Uz decreases as the particle moves away from the
surface due to exponential decay of the evanescent field. This
property can be further understood by analyzing F FT

z shown
in Figs. 8(e)–8(g) for xd = 0 (nm) and q = 8, 10, and 12 nm,
respectively. These figures show that the high-k bulk modes
are repulsive for |k‖/k0| � 25 and attractive for |k‖/k0| < 25.
Closer to the surface (q < zwell), the integral of the repulsive
contribution is higher than the attractive counterpart resulting
in repulsive Fz (q = 8 nm). Further away from the surface
(q < zwell ), the attractive contribution overcomes the repulsive
one due to the higher attenuation of the modes with |k‖/k0| �
25. Fz is close to zero where the contribution of both regions
is equal, and no force acts on the particle. Figures 8(i)–8(k)
show the spatial frequency dependence of the force along
the x direction (F FT

x ) for xd = 0 for q = 8, 10, and 12 nm,
respectively. The force acts pushing the particle to the right
(positive values) when kx/k0 > 0 and to the left (negative
values) when kx/k0 < 0, as shown in Figs. 8(i)–8(k). These
forces become equal and cancel due to the structure symmetry,
resulting in Fx = 0 when the dipole is located at the ridge cen-
ter. Note that F FT

x is weaker when the particle is further away
from the structure. However, since the positive and negative
contributions cancel, their influence on Fx is not as strong as it
is on Fz. An interesting phenomenon occurs when the particle
is located close to the −3-mK contour, i.e., at xd = –60 nm
and q = 10 nm. At this position, the influence of the groove
(62.5 nm < x < –75 nm) on Uz shifts the potential minimum
to the right side of the particle, thus pushing the particles
toward the +x direction, as depicted in Fig. 8(d). Furthermore,

the groove also disturbs F FT
z and F FT

x , as shown in Figs. 8(h)
and 8(l), respectively. The groove makes it physically more
difficult for the high-k bulk modes (kx < 0) to project into the
space above the surface (especially for |k‖/k0| � 25), which,
particularly for F FT

z , reduces the repulsive contribution of the
force resulting in a net Fz attractive force [see Figs. 8(d) and
8(h)]. For the same reason, the contribution of F FT

x to the right
gets stronger (kx > 0), resulting in a positive force pushing the
particles toward the ridge center [see Figs. 8(d) and 8(h)]. In
summary, any particle’s movement away from the EP (xd = 0
and q = 10 nm), either in the x or z direction, disturbs F FT

x and
F FT

z in such way as to generate a force that pushes the particle
to the EP. Therefore, the structure generates a potential well
capable of trapping small particles in a stable transversal and
longitudinal equilibrium.

We have chosen graphene due to both its small thickness
(helps increase kc) and conductivity (varies with external bias
voltage). This property allows us to dynamically control the
trapping position by individually adjusting the applied voltage
on each graphene ridge. It should be emphasized that to realize
the electric contacts, the patterning must be created along
one axis only (x axis here); otherwise the contacts would be
segmented, making it difficult to electrically connect the inner
ridges. In the event this limitation is overcome (with a proper
choice of materials and fabrication technology), our semian-
alytical model could still be used to design and optimize a
structure that ultimately would be capable of trapping in three
dimensions.

V. CONCLUSIONS

In this paper, we have proposed an approach for parti-
cle trapping/levitation (based on the point dipole scattered
radiation) and a semianalytical method to calculate the po-
tentials and forces generated by a particle radiation located
above a nanopatterned structure. With this formalism, we have
optimized a realistic nanopatterned graphene-based structure
capable of trapping small particles located above the struc-
ture. We have also demonstrated how to control the trapping
position by adjusting EF and the number of graphene layers.
Based on this control, we have optimized the structure to
achieve a deep well (Uwell Uwell = 10.5 mK for the dipole
alignment perpendicular to the surface or 5.3 mK for parallel
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FIG. 8. Spatial distribution of Uz for p = pz assuming the dipole at the ridge center (xd = 0) and at q = 8 nm (a), 10 nm (b), and 12 nm (c)
from the surface. The red arrows in (a,c,d) represent the force direction. The spectral distribution of (F FT

z , F FT
x ) is shown for xd = 0 (nm) and

q = 8 nm (a,i), 10 nm (b,j), and 12 nm (c,k) and for xd = −60 nm and q = 10 nm (d,l). The structure cross section is shown below (a–d) and,
for comparison sake, both (F FT

z , F FT
x ) are normalized to |Fg|/k0 × 10−7 to match those for FFT(kρ ) in Fig. 4(d). In (d), the structure is shifted

along the x axis to emphasize the field close to the groove and the force imbalance in (h,l).

alignment) whose minimum is far enough from the surface
(zwell = 10 nm) to reduce the attractive contribution of the
evanescent waves. Moreover, a deeper potential for larger
particle trapping can be achieved with stronger light exci-
tation. Using the proposed semianalytical method, we have
described the influence of the high-k modes on the repulsive
(kρ > 25k0) and attractive forces (kρ < 25k0) acting on the
particle. Based on this influence, we have also explained
why the force becomes repulsive for q < zwell and attractive
otherwise. We have then added 150-nm periodic grooves on
the optimized structure (with wr = 125 (nm) ) to bind the
particle movement along the x axis. Our results reveal that
close to the ridge center, the groove has little to no influence

on U due to attenuation of the high-k modes, and the force
resembles that of the nonpatterned structure. As the particle
moves toward the groove, the scattered waves unbalance the
lateral forces, resulting in a force that acts as a restoring
force on the dipole, limiting its movement along the x axis.
It is important to emphasize that the semianalytical method
allows the calculation of the spatial spectrum of both the
potential well and the force acting on a particle above any
nanopatterned structure, thus providing valuable insights into
the contribution of the high-k bulk modes to particle trapping.
It also allows confinement optimization along one, two, or
three axes for a generalized patterned structure. Combining
the semianalytical method with optimization algorithms, such
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as machine learning and genetic algorithms, among others,
would be straightforward. Our outcomes have direct applica-
tions to optical trapping, optical tracking, quantum cooling,
and electromagnetic levitation.
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APPENDIX A

Here, we discuss the necessary conditions for a bi-
axial homogeneous anisotropic medium with permittivity
and permeability tensors described as diag[ε‖; ε‖; ε⊥] and
diag[μ‖; μ‖; μ⊥], respectively, to generate repulsive forces.
Assuming a particle in vacuum above the described media, the
contribution of the particle s- and p-polarized wave emissions
is repulsive when Re{r0,0

p,p (|k‖|)} < 0 and Re{r0,0
s,s |k‖|} < 0

in the quasistatic regime (k‖ � k0) [13]. We substitute the
definition of r0,0

p,p and r0,0
s,s [41] into the inequalities,

Re

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

ε‖
√

k2
0−|k‖|2

√
k2

0μ‖ε‖− ε‖
ε⊥ |k‖|2 − 1

ε‖
√

k2
0−|k‖|2

√
k2

0μ‖ε‖− ε‖
ε⊥ |k‖|2 + 1

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

< 0
|k‖|�k0−−−−→ Re

{√
ε‖ε⊥ − 1

√
ε‖ε⊥ + 1

}

< 0 =>
∣∣√ε‖ε⊥

∣∣ < 1, (A1)

Re

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

μ‖
√

k2
0−|k‖|2

√
k2

0μ‖ε‖− μ‖
μ⊥ |k‖|2 − 1

μ‖
√

k2
0−k2

x√
k2

0μ‖ε‖− μ‖
μ⊥ |k‖|2 + 1

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

< 0
|k‖|�k0−−−−→ Re

{√
μ‖μ⊥ − 1

√
μ‖μ⊥ + 1

}

< 0 =>
∣∣√μ‖μ⊥

∣∣ < 1. (A2)

Based on (A1) and (A2), the contributions of p- and s-
polarized waves are repulsive if the medium parameters obey
the relations |√ε‖ε⊥| < 1 and |√μ‖μ⊥| < 1, respectively.
Nonetheless, when the particle is oriented perpendicularly
to the medium surface, the emission consists only of p
waves [see Eqs. (5)–(9). Therefore |√ε‖ε⊥| < 1 is condition
enough to exhibit a repulsive force. Moreover, the p- and
s-polarization contributions to the force modulus are pro-
portional to |r0,0

p,p| and |r0,0
s,s |, respectively. Consequently, a

medium with |√ε‖ε⊥| < 1 that also allows surface plasmon
polariton (|r0,0

p,p| � |r0,0
s,s |) would generate repulsive forces,

even if violating the condition |√μ‖μ⊥| < 1. One approach
to creating a medium with those properties is by stacking
alternating thin (<λ/10) layers of metallic and dielectric ma-
terials. Since the metallic (dm) and dielectric (dd ) thicknesses
are much smaller than λ, the medium behaves as a biaxial
homogeneous anisotropic material [30,31,41]. Furthermore,
by controlling the metal and dielectric thicknesses and per-
mittivities (εm and εd ) it is possible to control both ε‖ [ε‖ =
f εm + (1 − f )εd] and ε⊥ [ε⊥ = εdεm

f εd+(1− f )εm
], where f is the

FIG. 9. (a) shows the calculated |√ε‖ε⊥| for a stack of SiO2

(εd = 2.16) and graphene for different filling factors ( f ) and Fermi
potential (EF ). (b) shows the calculated |√ε‖ε⊥| for a stack of TiO2

(εd = 4.39) and graphene for different f and EF .

metallic fill fraction ( f = dm/[dm + dd ]); dm and dd are the
thickness of the metal and dielectric layers, respectively.

The use of graphene sheets as the metallic material adds
a new parameter for controlling the homogeneous permit-
tivity because it is possible to control εm by changing the
graphene Fermi level (EF ). To find the best dielectric material,
we tested |√ε‖ε⊥| both for a stack composed of graphene
and titanium dioxide (TiO2 εd = 4.39 at λ = 780 nm), and
for graphene and silicon dioxide (SiO2, εd = 2.16 at λ =
780 nm). Knowing that the goal of this calculation is to
decide the best dielectric material, the graphene is assumed
isotropic for the sake of simplicity. Figures 9(a) and 9(b)
show |√ε‖ε⊥| for different values of EF and f for SiO2 and
TiO2, respectively. The black dashed line delimits the region
where |√ε‖ε⊥| < 1 and the force is repulsive. As Fig. 9(b)
shows, the use of TiO2 demands high EF to achieve repulsive
forces (EF > 2.1eV). Also, the repulsive region is narrower
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in this case, meaning that a more accurate fabrication method
is required to achieve a specific f . Note in Fig. 9(a) that when
using SiO2, the repulsive region becomes wider, requiring a
lower EF (EF > 1.1eV). Also, a lower f becomes necessary,
which is desirable because it implies a lower number of
graphene layers. For this reason, we decided to use SiO2 in
the proposed structure. We have also tested other dielectric
materials (Si, GeO2), but low-refractive-index materials have
presented better results.

APPENDIX B

The graphene conductivity (σgraph ) of a single sheet is
modeled by the local (|k‖| = 0) random-phase-approximation
(RPA) [46–48,60,61] as follows,

σgraph(ω) = e2

π h̄2

i(
ω + iτ−1

)

×
{

ET
F −

∫ ∞

0
dE

fE − f−E

1 − E2/[h̄2(ω + jτ−1)2]

}
,

(B1)

where ET
F is the Fermi energy (EF ) corrected by the tempera-

ture as follows,

ET
F = EF + 2kBT log(1 + e−EF /kBT ), (B2)

τ = μEF /ev2
F , (B3)

fE = 1

1 + e(E−EF )/kBT
, (B4)

where e is the electron charge, T is the temperature, μ is the
mobility, and vF is the graphene Fermi velocity. Throughout
this paper, we have assumed T = 300 K, μ = 2000 cm2/V s,
and vF = 106 m/s [48]. Moreover, the Fermi wavelength
(λF = 2π/kF ∼ 4–10 m) is much smaller than the opera-
tional wavelength (λ = 780 nm). Thus the nonlocal effects in
the graphene conductivity are disregarded in this work (more
details about this can be found in [46–48]). The total conduc-
tivity of an N-layer graphene stack is σN = Nσgraph [62]. To
apply the graphene conductivity in the RCWA method, we
turn the graphene stack into a homogeneous biaxial medium
with parallel (εgraph

x ) and perpendicular (εgraph
y ) components of

the permittivity tensor described as [46,63]

εgraph
x,y = 1 + i

σN

ε0Ndlayer
, (B5)

εgraph
z = 1, (B6)

where dgraph is the thickness of a single graphene layer as-
sumed here as 0.3 nm [46].
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